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I.  The  InAs-GaSb THz lasing concept 
  

The advantageous property of broken-gap InAs/GaSb heterostructure from the 6.1 Å family is 
that the valence band bottom of GaSb is 0.15 eV above the conduction band bottom of InAs. 
Hence within the adjacent InAs conduction-band (CB) well and the GaSb heavy-hole (HH) 
valence-band (VB) well systems, the individual electron and hole energy-levels may be 
positioned close enough to allow for very long wavelength recombination though the same time 
the overlaps of individually quantum confined wave functions are small.   
 
In this part of investigations, we explore a novel approach for the generation of THz radiation that 
utilizes "interband" transitions and tunneling processes occurring simultaneously within double-
barrier GaSb/InAs/GaSb broken gap structures. 
 
The key innovations are the use of heavy-hole (HH) interband tunneling to realize ultra-fast 
depopulation of the lower state, and interband  optical recombination while certain nonradiative 
processes(e.g. phonon and Auger) are suppressed. The basic approach is illustrated in Fig. 1 (a). 
The double-barrier GaSb/InAs/GaSb is sandwiched between two n highly doped InAs contacts. 
The GaSb layers present potential barriers for electrons and wells for holes. At an appropriate 
forward bias, two processes contribute to the transport. The first is conduction band (CB) 
resonant tunneling where electrons transverse the energy level E2 inside the double barriers. The 
second is interband tunneling of electrons from the quasi-bound HH level E1 within the right 
valence band (VB) well into the unfilled states of the collector. As a result of the depopulation of 
VB electrons, heavy holes are created within the right VB well. The spatial heavy hole charge 
accumulation in this region is maintained when the heavy-hole interband tunneling prevails over 
the filling up from nonradiative scattering of electrons from the CB resonant level.  The injected 
CB electrons are able to recombine with the trapped holes to produce photonic emission with 
energy E2-E1 since the resonant CB wavefunction significantly penetrates through the right 
barrier and propagates into the spacer/collector. The very long-wavelength emission is a result of 
the large broken gap (i.e. the valance band top of GaSb is 0.15 eV above the conduction band 
bottom of InAs). This broken-gap alignment, which does not present any potential-energy barrier 
to interband tunneling, also produces rapid population inversion. 
 
The estimation of time constant (τ1) of heavy hole tunneling is plotted in Fig. 1 (b).  This 
calculation has already taken into account that conduction electrons could be injected into the HH 
well through interband tunneling from left side emitter when the broadening of energy level E2 is 
overlapped with level E1.  The fact that τ1 is extremely short less than 1 ps at large in-plane 
momentum kt is very remarkable. τ1 is in the order of 30ps at some momentum kt <0.01/nm. For 
comparison, relevant time constants as a function of kt are studied. These typical results show that 
the photonic recombination time τsp is in the order of 10-100 ns, the acoustic phonon scattering 
time τap is in the order of µs, and the polar optical phonon (POP) mode scattering time τop is in the 
order of 800 ps and the Auger recombination time is in the order of ns. These relaxation time 
constants are greater than heavy-hole tunneling time τ1.  Hence the interband tunneling of 
depopulation is rapid enough to help establish population inversion.  The ultrafast interband 
depopulation and the suppression of nonradiative processes allow InAs/GaSb I-RTD Laser diodes 
potentially to operate at high temperatures. Moreover, our calculation also shows significant 
optical gain ~1000/cm for the wavelength range beyond 20 µm may be obtained (Fig. 1 (c)). 
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Figure 1   (a)The concept of broken-gap heterostructure lasing. E2 is the CB level; E1 is the HH 
level. The upper horizontal arrow represents the CB resonant tunneling; The lower horizontal 
arrow represents the HH interband tunneling. EFc,(v) is the Fermi level at the emitter (collector). 
(b) The time constant for HH interband tunneling. The structure parameters used in calculations 
are: the widths of left barrier bl=2.0 nm, right barrier b2=5.0 nm, CB well w=11.4 nm , and the 
doping density in collector region N dR=7.4×1017/cm3. (c) The total optical gain versus photon 
energy at different doping density in emitter (a) 3×1018/cm3, (b) 2×1017/cm3. Optical gain=total 
gain per unit length; the active length ~10nm. 
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II. InAs/GaSb Broken-Gap Quantum Dot Arrays  
 
In this part of research we look into three dimensional confined InAs/GaSb quantum dots, in 
which the competitions from non-radiative processes may be further restrained.  The energy 
levels are truly discretized in quantum dots. As long as the photonic energy isn't fallen into 
optical phonon energy range ( i. e. tens of eV), the phonon relaxation is a slow process. As will be 
shown, the spatial separation of electron-hole pairs may actually be turned into an advantage.  
 
We study is a hypothetically simplified device structure in Fig. 2 (a).  The inner InAs region is 
approximated as a sphere surrounded by the outer GaSb shell. The device concept in a three-level 
system is illustrated by Fig. 2 (b). Under optical pumping, an electron-hole pair is generated on 
the ground conduction band level E2 and valence band level E0. Then the heavy hole relaxes  
from energy level E0 to the ground state E1.  The heavy hole’s relaxation is fast through the 
intersubband Auger recombination since a few valence band electrons are populated in E1. The 
stimulated emission occurs between ground levels E2 and E1. The energy levels E2,  E1 may be 
close enough to each other for long-wavelength optical recombination relying on the sizes of 
quantum dots. The pumping light is circularly polarized so that the interband transition E0 to E2 is 
allowed and the intraband transition E0 to E1 is forbidden. Moreover, electron and hole located in 
different shells are distanced from each other and can't be compensated because of the special 
band-edge alignments. Therefore extra energy is required to put another electron-hole pair into 
InAs inner sphere and GaSb outer shell in order to overcome uncompensated Coulomb 
interaction as illustrated in Fig.2(c). The resulting "non-negligible Stark shift" in broken-gap 
quantum dot allows stimulated transition to win over photon's absorption (Fig. 2 (d)). It is 
expected that optical gain is available through the single-exciton pumping. Therefore the 
multiple-exciton pumping is avoided in which harmful Auger recombination usually becomes 
significant. The advantage of single-exciton lasing concept was proved in Cds/ZnSe nanocrystal 
quantum dots with Type II heterostructure by Klimov. Another advantage of the laser concept is 
the quantum dots are undoped. Hence the loss from strong free electron absorption in THz 
spectrum can be prevented. 
 
The modeling and computing is based upon multiband Kane formulism in the spherical 
representation. The calculations show the excition-excition interaction energy could be ~13meV 
that is in the same order of inhomogeneous linewidth originating from the reasonable ~10% size 
variation of quantum dots. Thus the average number of exciton per site is ~0.76, right between 
the threshold 2/3 and the maximum 1. Hence the single-exciton stimulated emission is possible in 
this design. The Auger recombination resulting from multi-exciton pumping can be suppressed. 
The excition energy is accessible to the THz spectrum in the pseudo InAs/GaSb “atom” with 
proper inner spherical and outer shell radius (Fig. 2 (e)).  The estimation on the maximum optical 
gain is plotted in Fig.2 (f) suggesting decent THz gain can be obtained from an array of 
InAs/GaSb quantum dots.  
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Figure 2 (a) The spherical approximation. (b) The three-energy level electron transitions. (c) 
The Coulomb interactions arising in the generation of biexciton in broken-gap quantum dot, 
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energies at R 9nm. (f) The maximum optical gain at 9nm. 
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III. The InAs/GaSb Quantum Pillar  
 
According to literatures, type II superlattice pillars fabricated using electron beam lithography 
can achieve the diameter as small as 20nm.  
 
We extend our studies on the InAs/GaSb quantum pillars for THz lasing. The structure of 
multiple InAs/GaSb pillars is shown in Fig. 3 (a), (b).  As the lateral dimension of individual 
pillar is confined in tens of nanometers, the available in-plane momentum (x-y plane) kt is 
effectively quantized.  This quantization will have the CB injected current (which is the 
summarization of transmissions over kt) significantly reduced and the optical phonon scattering 
further constrained (Fig. 3 (c).) Meanwhile, the HH interband tunneling at discretized kt remains 
ultrafast and significant optical gain can still be accomplished (Fig. 3(d)). Furthermore, the TE 
polarization of interband radiation allows the implementation of the surface emission in a large 
area.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 (a), (b) Quantum dot array for surface emission. (c) The total gain Well width 13nm, left 
barrier 2nm, right barrier width 5 nm, Fermi level in emitter of 0.0478eV, Fermi level in collector of 
0.0173eV , doping 2×1017/cm3. (d) Time constants. (d) Optical gain. 
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IV. The Training THz electronics and spectroscopy by Physical Domains 
 
The training was given by Physical Domains LLC, is a small business leading in developments of 
THz devices and techniques.  This "hand on" training will help prepare Dr. Zhang for setting up 
and executing future experiments on novel nanoscale interband resonant tunneling diode or other 
THz devices in support of the existing NCSU/ARO project. 
 
The training programs include the following activities: 
   
(1) Measurement of coherent-power responsivity of LiTaO3 pyroelectric detector with integrated 
transimpedance amplifier (TIA) using two "spot" measurements at 0.104 THz (InP Gunn 
oscillator) and 0.530 THz (VDI FEM module).   
(2) Measurement of electrical noise of LiTaO3 pyroelectric detector + TIA using a digital lock-in 
amplifier (SRS-810).   
(3) Calculation of the noise-equivalent power (NEP) of the pyroelectric detector at 0.104 and 0.53 
THz using the results of (1) and (2) above. 
(4) Measurement of thermal radiation responsivity of LiTaO3 pyroelectric detector using a THz 
"grey" body at two separate temperatures.  The "grey" body of choice will be warm water in a 
polyethylene bottle, which is known to produce an emissivity of approximately 0.8 across the 
lower-THz region.  
(5) Calculation of the noise-equivalent temperature difference (NETD) of the pyroelectric 
detector using the results of (4) and (2). 
(6) Measurement of the current-voltage characteristic of a THz zero-bias Schottky diode (ZBD). 
(7) Measurement of the noise voltage from ZBD using ultra-low-noise operational amplifier. 
(8) Measurement of thermal radiation responsivity of ZBD using the same "grey" body as in (4) 
(9) Calculation of the NETD for the ZBD using (7) and (8).  
(10) Measurement of THz power from PD photoconductive switch using calibrated pyroelectric 
detector. 
(11) Assembly of THz simultaneous transmit/receiver T/R module. 
(12) Measurement of THz frequency from FEM coherent source using THz T/R module acting as 
a Mach-Zender interferometer. 
(13) Operation of commercial coherent photomixing transceiver (PB7100). 
(14) THz spectral characterization of canonical samples from the three states of matter: (i) water 
vapor in the ambient environment, (ii) liquids having low-polarity (e.g., acetone) and high-
polarity (e.g., methanol), and (iii) solids having resonant absorption (e.g., lactose monohydrate), 
broadband absorption (e.g., glass), and high transparency (e.g., polyethylene). 
 
The trainings were focus on THz systems and signal detections. For example, the spectral 
measurements of glasses with smooth rough and rough surfaces demonstrate that THz wave is 
less scattered by the rough surface than the infrared wave because of its longer wavelength (Fig.4 
(a), (b) ).  These data strongly evidences that THz wave can be an effective means for the imaging 
of human skin which is often coarse. As shown in Fig.5, grey body method (warm water in a 
polyethylene bottle) was applied to characterize three important THz detectors:  Golay cell, 
LiTaO3 pyroelectric detector and THz zero-bias Schottky diode.  
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Figure 4. The transmission spectrums on glasses with smooth and rough surface , measured with 
PB7100. (a)in the THz range; (b) the mid-infrared range measured with ConerStone 260 ¼ m 
monochromator.  

(a) 

(b) 



 9

 
 

             
0 1000 2000 3000 4000 5000 6000 7000 8000

295

300

305

310

315

320

time(s))

T
e

m
p

er
a

tu
re

 (
K

)

 

 

greybody temperature (K)
air temperature (K)

0 1000 2000 3000 4000 5000 6000 7000 8000

2

4

6

8

10

12

14

16

x 10-3

P
o

w
er

(V
)

 

 

detector reading (V)

 
          
 

               
0 1000 2000 3000 4000 5000 6000 7000 8000

295

300

305

310

315

time(s))

T
e

m
p

er
a

tu
re

 (
K

)

 

 

greybody temperature (K)
air temperature (K)

0 1000 2000 3000 4000 5000 6000 7000 8000

0.005

0.01

0.015

0.02

0.025

P
ow

e
r(

K
)

 

 

detector reading (V)

 
                
 

             
0 200 400 600 800 1000 1200 1400 1600 1800

290

300

310

320

330

340

350

360

te
m

pe
ra

tu
re

(K
)

 

 

water temperature (K)
air temperature (K)

0 200 400 600 800 1000 1200 1400 1600 1800
2

3

4

5

6

7

8
x 10-5

time(s)

p
ow

e
r(

V
)

 

 

detector reading (mV)

 
 
 
 
 
 

(a) 

(b) 

(c) 

Figure 5.  Greybody characterization of three THz detector categories, (a)Golay cell, (b) 
pyroelectric and (c) Schottky diode. 
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V. Experimental Setups for Testing InAs-GaSb THz Lasing Concept 
 
We conduct preliminary studies for engineering implementation of InAs-GaSb THz laser concept 
with the help of THz training course. 
 
The major device structure we plan to grow and study is illustrated in Fig. 6 (a).  The first step is 
to conduct electroluminescence measurements as shown in Fig 6. (b).  These measurements will 
probe the presence of holes produced by interband Zener tunneling; and the interband tunneling 
from HH level is such a rapid process that it outpaces the filling-up from optical transition or non-
radiative scatterings of electrons which occupy the upper conduction band level. These studies 
help us decide whether THz light emitting diodes are possible:  how much power can be obtained 
and what is the range of wavelength.   
 
The radiation is inherently TE polarized within this interband InAs/GaSb THz laser. This unique 
feature allows adapting distributed Bragg reflection (DBR) mirrors for effective mode 
confinement in the active layer.  The vertical-cavity surface emission laser (VCSEL) 
implementation can be built with dielectric DBRs deposited on the top of n+ layer and a thin 
metallic layer on the back of n InAs substrate as illustrated in Fig. 6 (c).  The Bragg mirrors 
consist of multiple periods of dual high/low dielectric layers with very low absorption loss at THz 
regime (for example, Si/Si3N4, Si refractive constant 3.42, Si3N4 , 1.98).  Each layer is with one 
quarter wavelength of thickness. VCSEL allows a single fundamental mode operation and surface 
emission.  This brings an advantage over quantum cascade laser in which the intersubband 
emission is intrinsically TM polarized. In that case the metal/dielectric or dual metal waveguide is 
applied as resonator to confine optical mode, and the output is the edge emission that suffers from 
poor coupling with the free space due to the small aperture in MBE the material growth direction 
and the loss from facet reflection. In principle, the TE THz sources we propose can be built into 
either a large area, high power output single device or a two-dimensional THz laser array on a 
single chip. The optical aperture can be made large given the freedom to enlarge the horizontal 
dimensions of device. This perspective is a great advantage for THz spectrum sensing and 
standoff detection. 
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Figure 6.  (a) The device structure for electroluminescence measurements.  (b) The experimental 
setup for electroluminescence. (c) VCSEL structure with metallic layer on the bottom. 
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Figure 7.  (a) The matrix of OMS.  (b) The OMS unit cell with Benzoyl Chloride. 
 

VI.  Modeling and Simulations of Conduction in Molecular Systems 
 
This part work is to develop transport models for designs of functional electronic materials that 
are based on organic Molecular Switches (OMS). The OMS function material concept is 
illustrated in Figure 7 (a). When the target agent molecules approach the OMS cells of function 
material, the energy positions of sensing traps such as Benzoyl Chloride are shift upward or 
downward arising from the polar twisting due to the interaction between sensing molecules and 
target molecules (Fig. 7 (b)).   This energy-level-switching behavior causes the detectable 
physical variations on material properties such as conductivity and dielectric constant. 
 
 
    
 
 
 
 
 
 
 
                        
 
 
 
 
 
 
 
We develop a phenomenological transport model that is traced back to the Marcus theory and 
Hopfield’s work.  Both models present actually the same fundamental equation although they 
were initially developed for different purposes. The Marcus theory is widely applied for the 
interpretation of chemical reactions while Hopfield’s was developed for the photon-assisted 
charge transfer within bimolecules. 
 
The charge transfer process is illustrated in Fig. 8 (a). The initial site a is in the reduced state and 
the final state b is in the oxidized state. The energy states are both broadened into Gaussian 
distribution due to strong coupling from phonons. The center of Gaussian distribution in the 
initial reduced state is  redro EE ,  and the center of Gaussian distribution in the final oxidized 

state is around  redro EE , , where redE  is the redox energy that is required to for an electron to 

be removed from a neutral defect to vacuum.  The Franck-Condon rule requires that the positions 
of nuclei in a molecular entity remain unchanged during electron’s transition that is almost 
instantaneous compared with the slow motion of nuclei.  The nuclei’s coordinate numbers 
remains the same during electron’s transition.  Therefore electron’s transfer occurs at the large 
probability when energy states are in the overlaps of Gaussian distributions between both reduced 
and oxidized states as shown in Fig. 8 (b). The parabolas are cross each other to keep the same 
coordinate number in this scenario. In addition, the charge transfer process is accompanied by 
relaxation of defects through the interaction with its environmental nucleus in which the defect 
obtains an electron. The equilibrium coordinate is shifted upward or downward in response to the 
variation on charges carried by the defect nuclei respectively (Fig. 8 (c)).   

(a) (b) 
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                                                         (a) 

                        
                                                       (b) 
 

                         
 
                                                     (c) 
 
 
 
 
 
 
 
 
The transition rate between a pair sites in term of the barrier height, site separation, 
reorganization energy can be evaluated from this physical model. Sequentially, the dc and a.c. 
and photo-assisted conductivities are evaluated.  The numerical calculations plotted in Fig. 9 

Figure 8. (a) before an electron transfer (b) during electron transfer, and (c) after an 
electron transfer. 
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confirm distinctive on/off switch behavior as the energy position of Benzoyl Chloride is modified 
by target molecules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The  dc, a..c . and photon-assisted conductivities for OMS based upon Benzoyl 
Chloride. 
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